# Simulations for Teaching and Learning in Higher Education

## Reprentis SRGE - Jes



## **SAGE for Learning**

David Kaufman, M.Eng., Ed.D. Director, Learning & Instructional Development Centre Professor, Faculty of Education Simon Fraser University Burnaby, British Columbia CANADA V5A1S6 dkaufman@sfu.ca



## **Simon Fraser University**





## **Apprentissage- JeS**

Louise Sauve, Ph.D. Professeure, Teleuniversite Presidente, SAVIE Quebec, CANADA

SAGE for Learning is a fully bilingual project (English – French)



Simulation and Advanced Gaming Environments (SAGE) for Learning: A Pan-Canadian Project

An SSHRC INE Collaborative Research Initiative
Lead institution: Simon Fraser University
24 researchers; 20+ partners
\$3 million grant
Oct. 1, 2003-Dec. 31, 2007

www.sageforlearning.ca







To explore the potential of simulations and games to support cognitive and social learning in light of new technologies, media and our knowledge of cognition and learning processes



## **Target Audiences**

- Medical students
- Health professionals
- Managers
- Professors, Teachers
- Students
- Patients
- Community workersPublic





## **Research Themes**



## Four Prototypes





## **Technology Tools**



Internet
 CD/DVD
 PDAs, cell phones, and wireless technologies
 Eye tracking devices



## Study focus -- Why Health?

- Responds to the priority of improving the health care system and the health of Canadians
- Facilitates the sharing of knowledge and results among team members in the current and future network
- Facilitates research and implementation on a large scale across the network



## Phase 1: Descriptive Research



- Systematic review of the literature on
   SAGEs for the past six years
- Analyze best practices in SAGE, e.g., design and success/failure factors

Analyze rigorous research studies on SAGEs
 Identify needs with regard to methodologies and tools for evaluation



## Phase 2: Developmental Research

Develop, pilot test, and revise prototypes based on the results of Phase 1.

Develop specifications for SAGEs to be indexed in learning object repositories



## SAGE - Games Domain EGC





## **SAGE - Simulation Domain** COMPS

#### 🖳 COMPS - user: uid01 class: BIO 101 group: admin

Agenda

History

9





|   | History Recor    | d | Library |  |
|---|------------------|---|---------|--|
| Þ | E <u>x</u> it    |   |         |  |
|   | Online/Connected |   |         |  |

Send

Next

SERVER> Welcome uid01 to group admin Type :help and click the "SEND" button for

Main

## SAGE – Simulation Games Contagion









## Phase 3: Evaluative Research

Develop methods and tools for formative and summative evaluation



 Use these methods and tools with the prototypes from Phase 2 to validate the learning in authentic settings



## **Definition of Simulation**

#### Tools that give you ersatz (as opposed to real) experience

#### In simulation you are pretending



Prensky M. (2004). Interactive Pretending: An Overview of Simulation. www.marcprensky.com/writing/Prensky-Interactive\_Pretending.pdf



## 'Truths' about Simulation

- At its centre lies a 'model'
- The creators' view of:
   what is important
   relationships among the simulation's elements
- Takes user input and produces feedback based on the model



## **Categories of Simulations**

Software **Business** Situational Technical Procedural Virtual Worlds Hybrid

IT/application training Management skills, running simulated companies, accounting practices Communication skills, problem-solving, decision-making Physical systems, equipment Step-by-step processes Recreating workplaces, environments Combination of above



# What are the factors creating a demand for educational simulations?





## **Benefits of Simulations**

- Provides practice and feedback
- Safer to make mistakes
- Avoids use of expensive equipment
- Improves "real life" processes
- Harnesses the power of story, e.g., engagement, enjoyment
- Can reduce training time



## **More Benefits**

- Users must apply what they understand by interacting in real time
- Users are unlikely to ever play a scenario the same way
- Users can try alternative interpersonal styles
- There are a limitless supply of scenarios to challenge even the most experienced
- Users learn as much through failure as they do success

http://simulearn.net/leadershiptraining/simulations.htm



## **Limitations of Simulations**

- Expensive and difficult to create
- Development time may be too long
- Not useful if content changes frequently
- Sometimes inappropriate for audience or situation
- Input is typically not very lifelike
- Limited set of choices is presented
- Often too much time for reflection
- Assumptions or rules usually not made explicitOTHER



## **Limitations of Simulations**





## **Effective Simulation Elements**

- Use of simulation genres, including branching stories, virtual products, virtual labs, interactive spreadsheets, flight simulators, 3D maps, others
- Appropriate use of elements such as modelling, AI, graphics, interface
- Creation of an atmosphere similar to actual context
- Presentation of behaviour to be modelled (e.g., narratives, instructions, case studies)
- Provision of feedback from decisions that shows 'natural' consequences
- OTHER?

www.e-learningcentre.co.uk/eclipse/Resources/simulation.htm



## Types of Simulations in Health Professional Education

- Role-play, small group "in-basket"
- Simulated/Standardized patients
- Computer-based clinical simulations, e.g. interactive, multimedia
- Video-based simulations, e.g. examinations, professionalism, ethics, doctor-patient relationships
- Realistic interactive simulations,
   e.g. plastic models, high tech modelling
- Complex interactive simulations, e.g. Human Patient Simulator





Collaborative
Online
Multimedia
Problem-based
Simulations



## **Simulation Examples**

## Reprentis SRGE-JeS



## Just About Everyone Has a Computer...







## **Resources for Further Learning**



Aldrich, C. (2003). Simulations and the Future of Learning : An Innovative (and Perhaps Revolutionary) Approach to e-Learning.



Prensky, M. (Dec., 2002). Digital Game-Based Learning.



## **Resources for Further Learning**



Simulation & Gaming journal

TEC 1280

Jeux, simulations et jeux de rôle : exploration et analyse pédagogique

www.e-learningcentre.co.uk/eclipse/Resources/simulation.htm www.insead.fr/CALT/Encyclopedia/Education/Advances/games.html www.sosresearch.org/simulationeducation/simteachingresources.html Google search on simulation, gaming, and related terms



## Acknowledgement

We wish to acknowledge the financial assistance of the Social Sciences and Humanities Research Council (SSHRC) in providing a \$3 million grant from 2003-07 to the SAGE for Learning project.

This presentation was supported through this grant.

www.sageforlearning.ca

