Gesture Friendly Interfaces

School of Information Technology

Overview

- The role of technology in learning
- The role of gesture in teaching, learning, and communicating
- New tools for teaching with gesture

Educational Technology

- Want students to do computer-based learning
 - Individualized lessons
 - Immersive visualizations
 - Interactive and in-depth explorations
 - Independent learning experiences

A Conjecture

- Students will (first/primarily) use the resources that their teachers teach with
- Teachers have to teach with (the same) educational technology

Classroom Option 1

- Computer lab with individual instruction
 - Most tools designed with this assumption
 - Expensive and inefficient
 - Still want occasional face-to-face, wholeclass teaching in this environment

Classroom Option 2

- Presentation PC and projector
 - Educational tools not often designed for this environment
 - Leads to poor presentation of material and technology
 - Interface design not suited for classroom teaching and gesture production

- Some ideas are best expressed with gesture (Kranstedt, Kühnlein, and Wachsmuth)
- Inability to gesture can lead to interference of speech production (Mayberry and Jaques)
- Increases complexity of spoken description

- Students learn better with gesture (Goldin-Meadow, Kim, and Singer)
 - Matching gesture improves uptake (compared to speech alone)
 - Mismatching gesture disrupts uptake
 - Students may uptake incorrect strategy communicated by gesture

- Some mathematical concepts are physical – fictive motion (Núñez)
 - Approaching limits
 - How can this be described without gesture?

Classroom Teaching

- Want to...
 - Engage students
 - Have eye-to-eye contact
 - Create dynamic visualizations
 - Simultaneously perform relevant/required gestures

Teaching with Technology

- End up...
 - Concentrating on PC screen
 - Talking into the PC
 - Focusing on the mouse/keyboard interface
 - Disengaging from the class

Non-intrusive interface

Flexible material presentation

Gesture Friendly Interfaces

Low-cost/low-tech solution

 Viable in most computer-equipped classrooms

Designing GFIs

- Pick an important feature of the learning object that will be highlighted during a classroom presentation
- Develop a simple way to control this feature

GFI Example

 Choosing a Cell Phone Plan – Lines and Intersections

Designing Flexible Material

 Primary complaint of learning objects from pre-service teachers is that the material cannot be built up towards the final state

- Fun and Sun Rent-A-Car
 - http://math.rice.edu/~lanius/Algebra/renta carja.html

 Choosing a Cell Phone Plan – Data Collection

Improvements

- Flexible design allows incremental inclass teaching
- GFI makes whole-class, face-to-face teaching possible
- New learning object provides corrective feedback

Other Tools

- Digital Mathematics Performances
 - http://www.atkinson.yorku.ca/~sychen/res earch/math/DMP.html

Digital Mathematics Performances and GFIs

- How will teachers be trained to use GFIs?
- Key features are physical, so key training likely visual

Summary

- Gesture is an important part of teaching and learning
- Classroom presentation is an important part of learning object design